Exercise 21

Find the domain of $y=\frac{x+3}{4-\sqrt{x^{2}-9}}$.

Solution

For a rational function, the denominator cannot be zero. Additionally, only the square root of a nonnegative number can be taken.

$$
\begin{aligned}
& 4-\sqrt{x^{2}-9} \neq 0 \text { and } \quad x^{2}-9 \geq 0 \\
& \sqrt{x^{2}-9} \neq 4 \quad \text { and } \quad x^{2} \geq 9 \\
& x^{2}-9 \neq 16 \quad \text { and } \quad \sqrt{x^{2}} \geq \sqrt{9} \\
& x^{2} \neq 25 \quad \text { and } \quad|x| \geq 3 \\
& \sqrt{x^{2}} \neq \sqrt{25} \quad \text { and } \quad(x \geq 3 \quad \text { or } \quad x \leq-3) \\
&|x| \neq 5 \quad \text { and } \quad(x \geq 3 \quad \text { or } \quad x \leq-3) \\
& x \neq \pm 5 \quad \text { and } \quad(x \geq 3 \quad \text { or } \quad x \leq-3)
\end{aligned}
$$

Therefore, the domain is $(-\infty,-5) \cup(-5,-3] \cup[3,5) \cup(5, \infty)$.

